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Nominally 2-dimensional viscous flow induced by gravity waves over a spatially periodic 
bed is simulated by a Lagrangian vortex scheme. A vortex sheet is introduced on the surface 
at each time step to satisfy the zero velocity conditions. The sheet is discretised; the vortex-in- 
cell method is used to convect vorticity and random walks are added to effect viscous dif- 
fusion. Good agreement with analytical theory is obtained for velocity profiles in uniform 
sinusoidal flow and for mass transport due to linear waves. Mass transport for finite 
amplitude waves is also obtained. For separated flow over rippled beds, which is still liminar, 
a vortex decay factor is required to produce agreement with experiment and is thought to 
compensate for large scale 3-dimensional effects. r! 1985 Academtc Press, Inc. 

INTRODUCTION 

The solution of the vorticity equation by the Lagrangian discrete-vortex method 
presented by Chorin [ 1, 23 represents an attractive alternative to Eulerian linite-dif- 
ference schemes [3]. In particular, a solid surface is not required to follow a mesh 
contour. The vorticity is represented as points of concentrated circulation, vortices, 
which are convected in an inviscid calculation, and viscous diffusion is superim- 
posed by adding random walks. This representation improves as the number of vor- 
tices increases, and to obtain efficient velocity calculations for very large numbers of 
vortices (up to 104) Stansby and Dixon [4] incorporated the use of the vortex-in- 
cell method [S, 6, 71. They tested the method with steady and oscillatory onset flow 
on a circular cylinder and showed good qualitative agreement with experiment. In 
this paper, this approach is applied to laminar, wave-induced flows on a plane and 
slightly undulating bed, where flow is attached, and on a rippled bed, where flow is 
separated. For the former, there is an analytical solution for mass transport due to 
linear waves and for the latter, there are accurate measurements of periodic velocity 
fluctuation. The only previous comparison with an analytical solution was for 
steady flow over a flat plate (without using the vortex-in-cell method). These flows 
are thus rather different with a strong oscillation and a zero or weak mean com- 
ponent; vertical convective motion is of vital importance. Mass transport is also 
obtained for waves of finite amplitude [2] (defined by an accurate numerical 
method [S]) which is of some practical value in the field of coastal engineering. The 
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method is first tested with a uniform sinusoidal onset flow over a plane bed, so that 
velocity profiles may be compared with Stokes theory [9]. This is also the onset 
flow used in the rippled bed measurements. In principle an arbitrary wave flow may 
be used to drive mass transport with flow separation, but this has not been 
attempted here. 

THEORETICAL FORMULATION 

Discrete Vortex Method 

A Lagrangian vortex scheme may be used to solve the vorticity equation for 2- 
dimensional flows: 

DO -= 
Dt 

vv20. 

At the onset of any flow, a surface may be represented by a vortex sheet, with a 
variation of intensity chosen so that the velocity everywhere inside the surface is 
zero. After a time step d t, the action of viscosity diffuses vorticity from the surface 
into the fluid. This may be modelled by applying random disturbances to the sheet, 
represented as a layer of discrete vortices, the orthogonal co-ordinates of the ith 
vortex in the sheet changing according to the equations: 

Xj(t+dt)=Xi(t)+~,i(t) Pa) 

YiCt + dt) =.Yitt) + VZitf). Pb) 

A set of random numbers is sampled at each time step from a Gaussian distribution 
with zero mean and variance 2vAt, where v is the kinematic viscosity. The values of 
qli(t) and q2i(t) are read consecutively from this set. Any vortex passing below the 
the surface is reflected back onto its mirror-image position in the fluid [2,4]. 

To determine the convective component of motion, the velocity for each vortex 
may be calculated by summing the contributions of every other vortex in the flow. 
The time taken to perform this calculation becomes prohibitively high when large 
numbers of vortices have been introduced (> 200 say). An efficient alternative is 
provided by the vortex-in-cell method, described below. At each new time step the 
surface boundary condition is maintained by creating a new vortex sheet along the 
surface. 

Vortex-in-Cell Method 

The velocity (u, u) at any point can be obtained from the vorticity distribution 
using Poisson’s equation, which relates vorticity w to stream function II/ 

V’l) = -co, (3) 
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together with the equation 

a$ u=- 
ay 

a* 
v= -ax. 

(44 

(4b) 

These equations are solved on a rectangular mesh, defined over the region of 
rotational flow. Each discrete vortex contributes to the vorticity at the four mesh 
points of the cell in which it is situated. An area weighting scheme was used, which 
conserves total circulation. 

Poisson’s equation (3) can be solved efficiently by the use of fast Fourier trans- 
forms, yielding the stream function distribution. A routine for this purpose was 
available at the University of Manchester Regional Computer Center (UMRCC). 
Equation (4), expressed in finite difference form, may then be used to calculate the 
velocity at any mesh point where it is required: 

U;j= (Icli,+ 1 - $i,,- 1)PAY 

vi,j= - ($i+ l,j- rl/i- l,j)/2Ax 

(54 

(5b) 

dx and dy are the dimensions of the mesh in x and y, respectively. The local 
velocity of each discrete vortex can be found, by bilinear interpolation, from the 
velocities of the four mesh points of the cell which contains it. 

The vortices are moved according to a second-order scheme: 

x(t+At)=x(t)+(u(t)+u’(t)) At/2 

y(t+At)=y(t)+(v(t)+v’(t)) At/2 

(6a) 

(6b) 

where u’(t) and u’(t) are the velocities at position (x’, y’): 

x’(t) = x(t) + u(t) At 

y’(t) =y(t) + v(t) At. 

(7a) 

0) 

Boundary Conditions for the Mesh 

The orthogonal coordinates x and y are defined to be, respectively, tangential 
and normal to the bed. A rectangular region R, with boundaries B,, B,, B,, and B, 
is set up so that the surface lies parallel to B, and B, (Fig. 1). The region contains 
the mesh on which Poisson’s equation (3) is solved, the following set of boundary 
conditions having been specified: 

(i) Periodic boundary conditions are imposed on B, and B,; their separation 
L, is equal to the wavelength, if any, of the flow. 
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-x(x) 
FIG. 1. Flow region for the solution of Poisson’s equation. 

(ii) a$/ay is specified along B,. If L,-h is sufficiently large, this can be 
equated to the free-stream velocity U,(X): 

w - = u,(x). ay 
(iii) If the plane bed is considered to be the upper face of a body of infinite 

extent in the x direction, with thickness 2h and with a line of symmetry along y = 0, 
the normal component of velocity will, by symmetry, be zero along y = 0 (Fig. 1). $ 
can thus be set equal to an arbitrary constant at all points along B,. 

It is a feature of the vortex-in-cell method that the influence of vortices within 
one cell size of a surface is not accurately represented at the surface [4, 71. Tangen- 
tial surface velocities, required in the calculation of the strengths of new vortex 
sheets, are thus calculated at a distance of one cell size (dy) inside the surface. 
From Eq. (5b), this sets a lower limit of 4dy on the value of 2h. 

The Expanding Mesh 

In order to model the boundary layer in detail, while maintaining B, above the 
region of rotational flow, a mesh may be used which expands exponentially in the y 
direction. A change of variable is introduced, i.e., 

y’=A ln(y+ 1) (9) 
where A determines the rate of expansion of the mesh. This is equivalent to mapp- 
ing the mesh points of the expanding mesh onto a uniform rectangular mesh. The 
routine used to solve Eq. (3) was modified to solve equations of the form: 

(10) 
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Applying the change of variable (9) to Poisson’s equation (3), 

a(Y’)=A2exp(-2$/A) 

h( y’) = -A exp( -2$/A). 

The boundary condition specified along B, (Eq. (9)) must also be modified: 

ew(y’lA) u,(x) 
A 

(114 
(lib) 

(12) 

where suffix 1 corresponds to values taken along B,, the top of the mesh. 

The Influence Matrix 

In the case of a infinite plane, the velocity beneath the surface becomes zero if the 
new vortex sheet strength is simply made equal to twice the local tangential com- 
ponent of the surface velocity; vortex sheet elements are collinear and have no 
influence on each other. For an infinite rectangular body (Fig. 1 ), however the 
influence of the vortex sheet representing the lower surface of the body must be 
taken into account. 

Vortex sheet strength may be determined from the distribution of tangential 
velocities which would exist along the surface in the absence of the sheet. The 
strength of any finite segment may be obtained numerically by solving the matrix 
equation 

Ky=b (13) 

where 

K(I, J) =& [f” (V, A ln(r,) k) . t, ds 1 (I# J) SA 
K(I, J) = 0.5 (I= J) 

b(l) = -II;. 

The surface of the body, which lies in the (x, y) plane, is parameterised by a 
variable s. sA and sB are the end points of the Jth segment. rs is the distance 
between an arbitrary origin and a point on the Jth segment. k is the unit vector in 
the z direction and t, is the tangential unit vector at P, a collocation point at the 
midpoint of the Zth segment. I$, is the tangential velocity at P in the absence of sur- 
face vorticity. y(Z) is the strength of the Zth segment (assumed to be uniform). If K 
is non-singular, a solution for y is given by 

y=(K-‘) b. (14) 

The element K(Z, J) (I# J) is equivalent to the tangential velocity which would be 
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induced at the collocation point of segment Z by the Jth segment, if the Jth segment 
were to have unit strength. This quantity is dependent only upon the geometry of 
the body; K - ‘, the influence matrix, need only be calculated once and then stored. 
At each time step, the surface vorticity distribution can be found by 
postmultiplication with b. 

Two approaches have been adopted in calculating K(Z, J) for an infinite plane 
modelled as a rectangular body of infinite length and finite thickness: 

(i) approximating each segment by a point vortex and using the exact 
expession for the velocity due to an infinite row of vortices [lo]. 

(ii) applying the exact expression for the velocity field of a single vortex sheet, 
but truncating the series at some distance on either side of I. 

The errors in approach (i) will tend to decrease as the separation between the 
upper and lower surfaces increases. The converse is true of approach (ii), as is 
illustrated in Fig. 2. The separation is determined by the mesh size in the y direction 
and therefore by the normal extent of rotational flow, the boundary layer thickness. 
The selection of either (i) or (ii) thus depends upon the ratio of the boundary layer 
thickness to the wavelength of the flow. 

To model infinite surfaces of general periodic form, terms representing the 
influence of the upper surface are of course significant. 

= 

= 

100 
80 
60 

FIG. 2. The calculation of steady, irrotational flow, velocity UO, over a plane, represented by: (i) an 
infinite row of point vortices, each separated by a distance Lx/N,; (ii) a finite row of linear vortex sheets, 
of total length nL,. The error in horizontal velocity Au at a height h above the plane, for methods (i) 
and (ii), respectively, is given by: AU/U, = (2exp( -2) - l)/(exp(l) + exp( --A) - l), i, = ZnhN,/L, 
(heavy line); and AU/U,, = 1 - (2/7r) arctan(nL,/h)(light line). 
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SINUSOIDAL FLOW OVER A PLANE BED 

In order to assess certain numerical parameters and to test the accuracy of the 
method, results were compared with the analytical solution for a fluid executing 
linear sinusoidal oscillations parallel to an infinite plane. If the free stream velocity 
u of the fluid varies sinusoidally as a function of time ( U0 sin (at)), the flow will 
reach a steady state in which vorticity is confined to a boundary layer of thickness 
O(6), where 6 = (2v/a) l/2 The velocity profile is given by . 

u/U, = sin(at) - exp( -y/6) sin(at -y/6). (15) 

For a particular value of y/6, the quantity u/U, is independent of the amplitude of 
oscillation, expressed in the form of a Reynolds number 

Re = Ui/( va). 

A uniform rectangular mesh was used for the velocity calculation. B,, the upper 
boundary of the mesh, was set at a distance of 5.16 above the surface. In the 
analytical solution for the steady-state flow, a maximum of 0.59 % of the total vor- 
ticity should lie outside the domain of the calculation. The boundary condition 
(Eq. (8)), imposed along Bl in the solution of Poisson’s equation (Eq. (3)), was 

0.10 

$=U,sin(ot)+ C 2 
.“,>Y -y 

(16) 
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FIG. 3. Time variation of f/U,J following the onset of flow. r is the total circulation within the fluid 
above the mesh. Discrete vortices, having passed through the upper boundary of the mesh, may either (i) 
be held stationary (+ ) or (ii) be allowed to continue their random walk (@), thereby having a finite 
probability of reentering the mesh. 

581/60/3-10 
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in which the final term incorporates into the calculation the influence of discrete 
vortices which have diffused above B1. Viscous diffusion, modelled by Eq. (2), is 
applied to all of the discrete vortices. Fig. 3 illustrates that it is necessary to include 
those vortices lying outside the mesh in order to prevent the occurrence of a 
systematic error, leading to a steady accumulation of circulation above B,. 

The time development of velocity profiles during the first two cycles following the 
onset of the flow is shown in Fig. 4 for Re = 100 and Re = 0. At Re = 100, the 
amplitude of the convective motion of the vortices exceeds that due to viscous dif- 
fusion. At Re = 0, v -P co and d + cc while the ratio V/G, and therefore the viscous 
diffusion of the vortices, remains finite. The amplitude of convective motion U,/a, 
however, tends to zero. 

Re=lOO 

-1 0 

Y/6 

: 

05T 075T 

FIG. 4. Time development of velocity profiles above a plane surface following the onset of sinusoidal 
wave motion, for which Re = 0 and Re = 100: (-) = steady-state solution (Stokes); (. .) = com- 
putational results. 
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06 L 1 

0 1 ut 2 

FIG. 5. Time variation of the r.m.s. error in the velocity profile of sinusoidal flow over a plane, for 
the case of Re = 0. 

An rms error in the computed velocity profile is defined as 

(17) 

where U, and uT are respectively the computed and theoretical velocities at time t. 
E rms reaches an approximately constant value after the first cycle (Fig. 5). It can be 
used to make a quantitative comparison of computed and theoretical velocity 
profiles as the parameters of the mesh and the flow are varied. 

Figure 6 show E,,, evaluated at the end of the first cycle, plotted against 
Reynolds number. Its value varies by less than 5% over the range of Reynolds 
number 0 < Re < 104. Above this range, however, it increases continuously. The 
increase in E,,, at high Reynolds numbers is the result of errors in the calculation of 
u, the velocity component normal to the plane. This produces normal displacements 
of the discrete vortices, the magnitude of which becomes comparable to 6 as the 
relative thickness of the boundary layer decreases. 

In Fig. 7, the effect is shown of varying the cell size parallel to the plane (dx) at 
three different Reynolds numbers. The results are consistent with Fig. 6: greater 
errors are found for flows in which amplitude is large with respect to boundary 
layer thickness. This is only true, however, when the tangential displacement of the 

0 1 I I 
1 10 lo2 lo3 Re"y 2 lo' 

FIG. 6. The variation in r.m.s. error, evaluated at the end of the first cycle, with Re’/*/2. 
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FIG. 7. The variation in r.m.s. error, evaluated at the end of the first cycle with AxNJG. 

discrete vortices in one time step is greater than the cell size Ax. At higher values of 
Ax, errors are independent of the Reynolds number. 

Appropriate values for the parameters T/At, y,/6, Lx/Ax, and Ns, where N, is 
the number of vortex sheets representing the section of the plane covered by the 
mesh, are given below: 

; 2 40 (184 

Yl 
-B 2 5 

2 2 33 

N, 2 60 

The results on which (18d) is based are plotted in Fig. 8. 

MASS TRANSPORT 

Physical Background 

Mass transport under gravity waves is the long-term drift of fluid elements. 
Stokes [ 1 l] made the first theoretical study of mass-transport velocity, in which he 

02 
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FIG. 8. The variation in r.m.s. error, evaluated at the end of the first cycle, with N,. 
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considered small amplitude progressive waves, assuming irrotational flow 
throughout the fluid. In contrast to observation, Stokes theory predicts a mass- 
transport velocity at the bed in the opposite direction to that of propagation of the 
wave. 

A forward mass transport in the lower part of the flow was obtained, to a first 
approximation, by Longuet-Higgins [12], whose theory included the effects of 
viscous boundary layers at the free surface and at the bottom. Longuet-Higgins 
considered both standing waves and progressive waves of infinite lateral extent. 
Motions in the interior and in the boundary layers were dealt with separately. At 
the bottom, the mass transport velocity tends towards a limiting value just beyond 
the boundary layer, whereas at the free surface the same is true of its gradient. 
These results are independent of the ratio of amplitude of particle motion (wave 
amplitude) a to boundary-layer thickness 6. In the interior, however, the nature of 
the motion is determined by this ratio. When a < 6, viscous diffusion governs the 
distribution of vorticity, whereas when a B 6, vorticity is diffused with the mass- 
transport velocity. The corresponding solutions to the field equations were called 
the conduction and convection solutions. The conduction solution is unique when 
the net mass flow acoss any vertical section is specified. The convection solution, 
however, requires the specification of additional boundary conditions at the 
upstream and downstream ends of the flow. 

Dore [ 133 derived the mass-transport velocity for linear waves in which a $ 6 by 
the use of a double boundary-layer model. The double boundary layers consist of 
oscillatory boundary layers, of thickness 6, at the bottom and at the free surface, 
inside which first-order vorticity is confined. Adjacent to these are the outer boun- 
dary layers, of greater thickness, which contain the second-order vorticity. The 
assumption of infinite lateral extent is no longer made; the waves are assumed to be 
generated at a point x = 0, and to commence at a time t = 0. After a sufficient time 
has elapsed, and at a sufficient distance from x = 0, a steady-state vorticity field 
becomes established within the boundary layers and the corresponding mass-trans- 
port velocity can be derived. 

Several theoretical investigations have concentrated on the bottom boundary 
layer; the mass-transport velocity in this region is of particular interest because of 
its role in the motion of sediment near the sea bed. Dore [14] obtained a second- 
order approximation to the mass-transport velocity, taking into account the 
development of an outer boundary layer and the point of generation of the waves. 
The effect is to impose a uniform shear velcoity, which decays as (1/x)‘12, on the 
solution of Longuet-Higgins. In the case of progressive waves, this gives a reduc- 
tion in the mass-transport velocity compared to the predictions of first-order 
theory; this reduction tends to zero as x tends to infinity. 

Isaacson [IS] had earlier obtained a first approximation to mass-transport 
velocity for shallow water waves at the edge of the bottom boundary layer, based 
on cnoidal wave theory. In 1978 [16], he produced a series of curves based on 
cnoidal theory and Stokes second-order wave theory, assuming a smooth transition 
in the region between the depths at which each theory is applicable. Although these 
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curves include a second approximation, which was shown by Dore [14] to be 
erroneous since the outer boundary layer was not accounted for, comparison with 
experimental results shows the prediction of features not anticipated on the basis of 
linear theory. 

Calculation of the Mass Transport Velocity 

Two approaches were used in determining the mass-transport velocity: a 
Lagrangian method, in which the motion of marker points was followed, and an 
Eulerian method, in which the mass-transport velocity was calculated from the 
stream function distribution. 

(a) The Lagrangian Method 

A regular, rectangular array of m * n test points, at n different heights above the 
surface, is set up at the start of each run. The mass-transport velocity is found from 
the motion of the points in the velocity field, calculated using the second-order 
time-stepping procedure described above for the convection of discrete vortices. 
Over one period T, the points.follow an elliptical path, superimposed on which is a 
steady drift parallel to the surface. The drift dij of each point, and hence the mean 
mass-transport velocity U,( y =y,), can be found at each height: 

(19) 

(b) The Eulerian Method 

For small-amplitude linear waves, Longuet-Higgins [12] obtained the following 
first approximation to the mass-transport velocity: 

where the bars denote mean values with respect to time. The velocity vector 
u = (u, U) has been expanded in terms of the small parameter E: 

u=&U,f&U2+ . . . . (21) 
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Terms of higher order than second have been neglected. If the stream function $ is 
also expanded in terms of E, Eqs. (20~) and (20d) can be written 

When the flow reaches a steady state, Eqs. (22) can be replaced by 

4 aS+bl 
uM,,=-- 

c axay s 
-x atil 

dydxx’ 
~2 a**, 

ubl3=-~+I 
c ay 

(22b) 

(23a) 

(23b) 

where c is the wave speed. The bar now denotes spatial averaging in the x direction 
at a fixed time. UM2 and U,, are obtained by solving Eqs. (23a) and (23b), 
expressed in finite difference form, on the mesh containing the stream function dis- 
tribution. Before being applied to Eqs. (23), the stream function at each mesh point 
is averaged over several time steps. Figure 9 illustrates the process; a second mesh is 
used, defined within a frame of reference in which the wave is stationary. 

he t time t l ax 

T 

t Um 4 urn 

/I Ml 
I 
/ I Ml 

J--+7+- 

FIG. 9. The phase-averaged stream function t,kii, at the mesh point (i, j) of mesh Ml, moving in the 
positive x direction with the wave speed c, obtained by superimposing the vorticity distribution of the 
stationary mesh Mz at each of N time steps, 
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In the present method, errors in the finite difference approximation to third- and 
fourth-order derivatives of the stream function limited the calculation of mass- 
transport velocity to second-order terms. No such error, however, was involved in 
the calculation of is, the mean Eulerian belocity. U can be obtained by summing the 
circulations Ti of all discrete vortices below height y: 

U(y)= - c ;. 

L‘ICJ’ x 
(24) 

An alternative method is that also adopted by Longuet-Higgins; given the stream 
function distribution $, the mean Eulerian velocity can be found directly from the 
vorticity equation (25), if it is assumed that tj represents a steady-state solution, so 
that tj and o are periodic. 

The vorticity equation in 2-dimensional form is 

au c+(u~v)w=vv2u. (25) 

Taking mean values with respect to time, 

$o]+(“Aqu=vv2o. (26) 

If o is periodic, the first term in Eq.(26) is zero, and 0 is equal to the first 
derivative of U normal to the surface. If w and u are written in terms of $, from 
Eqs. (26), (3), and (4), U is given by 

V'lc/ dy3 (27) 

with boundary conditions 

ii=0 (Y=(J) (284 

dfi+O 
& 

(Y-m) 

d2ii 
d?,z=o (y=O). 

(28b 1 

Equation (27), in finite difference form, is solved numerically on the rectangular 
mesh containing the time averaged distribution of $. 
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Mass Transport Due to Linear Waves 

(a) Irrotational Flow 

Stokes’ irrotational calculation of fluid motion under small amplitude waves in 
deep water predicts a mass-transport velocity profile given by 

u 

M 
= 4alk)* cash WY) 

2kcosh* (y,k) (29) 

where a is the sinusoidal wave amplitude at a height y above the bottom. 
In order to compare computed mass-transport velocity with Stokes’ theory, the 

bottom surface was represented by an infinite vortex sheet, a single wavelength sec- 
tion of which was modelled by a row of 80 segments. Eqs. (3) and (4) were solved 
at each time step on a rectangular mesh consisting of 33 x 35 square cells. A rec- 
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FIG. 10. The paths of two test points, at different heights above the bed, over one cycle of a small 
amplitude irrotational wave, where a, k = 0.893, y, k = 5.301. The arrows show the forward drift of each 
test point through one cycle. 



504 SMITH AND STANSBY 

tangular array of 33 x 35 test points was used to calculate the mass-transport 
velocity by the Lagrangian method. 

The boundary condition on the stream function gradient, imposed after n time 
steps at the top of the mesh is given by 

au ( 1 & y=y, 
= ala sin(kx - fin dr). 

The elliptical paths followed by two test points over a single cycle, together with 
their drift in the positive x direction, are shown in Fig. 10. 

Agreement with Stokes theory (Eq. (29)) was found over the range 

0.6 5 yk 5 3.5 

0.016 5 ak 5 0.134. 

This is shown in Fig. 11. 
The limit of the small amplitude approximation (ak 6 1) is approached at the 

upper end of this range whereas, at the lower end, the elliptical paths of the test 

3- 

ky 

2- 

I I 

0 1 2 3 4 5 6 

arcc:st, &ostt y,k 1 
10 

(a,kfu 1 
FIG. 11. Variation of arc cosh[2kUM(cosh2 (v,k)/(a,k)* u] with kv for a small-amplitude 

irrotational wave, where al k = 0.893, y,k = 5.301. UM has been calculated from the mean forward drift, 
at each height, of an array of test points: (-) = linear wave theory; ( + ) = computational results. 
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points become small with respect to the cell size and errors in the velocity 
calculation significantly affect their motion. 

(b) Within the Bottom Boundary Layer 

Comparison was next made with the predictions of Longuet-Higgins [ 12 1; the 
mass-transport velocity within the bottom boundary layer is given by 

U M z=q [S - 8 exp( -y/6) cos( y/S) + 3 exp( -2y/6)]. (31) 

The theory assumes first that the boundary layer is sufficiently thin that the wave 

t 

II 
10 

k"ucosl%y,k; 5 

(a,kfu 
FIG. 12. Variation of [NM cosh2(y,k)/(a,k)2 CT] with y/6 for a progressive wave for which 

a/L = 0.20 and 6/L = 3.1 x 10 -j. U, has been calculated from the average forward drift of an array of 
test points through the second cycle following the onset of motion: (-) = theory (Longuet-Higgins); 
(0) = computational results. 
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amplitude, given by irrotational wave theory, does not vary significantly across 
6(k6 4 l), and second that linear wave theory can be applied to the first-order 
motion of fluid outside the boundary layer (ak < 1). No restrictions are placed 
upon the ratio of wave amplitude to boundary-layer thickness. 

A mesh was used which expanded exponentially in the y direction. Strong tran- 
sient effects occur during the first cycle, as the viscous boundary layer becomes 
established. The mass-transport velocity profile was therefore calculated by follow- 
ing the motion of a regular rectangular array of test points during the second cycle 
after the onset of the flow. Fig. 12 shows a mass-transport velocity profile calculated 
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FIG. 13. Variation of [k/~(a,k)~] Us,, and [k/~(a~k)~]( UMz + U,,) with y/6. The terms UM2 and 
U,, have been calculated from the stream-function distribution, averaged over the second cycle follow- 
ing the onset of motion: [k/u(a,k)‘] U MZ, (-) = theory (Longuet-Higgins), while (0) = computational 
results; for [k/o(a,k)*]( UMz + UMg), (---) = theory (Longuet-Higgins), while ($ ) = computational 
results. 
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in this way. The results contained considerable scatter. Although the mean dis- 
placement of the test points in the y direction was zero, individual points were 
found to drift by amounts of order 6, indicating the presence of transient starting 
effects. 

Equations (20) show that the expression for the mass-transport velocity can be 
separated into terms U,, and UM3 which are functions of the first-order velocity 
components u and u, and a term UM,, which is equivalent to the mean second-order 
Eulerian velocity in the x direction. Dore [14] showed that the oscillatory boun- 
dary layer, inside which the first-order vorticity is confined and determines the 
profiles of U,, and UM3, is established rapidly after the onset of the flow. An outer 
boundary layer, which is produced by second-order vorticity diffusing into the flow 
and thus determines U,,, is established more slowly. Computational profiles of 
U M2 and UM, were evaluated by applying Eqs. (23) to a stream-function dis- 
tribution, obtained by averaging over the second cycle. A profile is given in Fig. 13 
for the case of a = 0, and comparison made with the theoretical predictions of 
Longuet-Higgins: 

U,, = a'akC0.5 + 0.5 exp( -2y/6) - exp( -y/6) cos( y/6)] (32a) 

UM3 = a*ak[y exp( -y/d)(sin( y/6) + cos( y/d))/26 

-0.5 exp( -y/6) sin( y/6)]. Wb) 

In the case of waves with non-zero amplitude, agreement with the predictions of 
Longuet-Higgins was obtained in the range 

0 < ak 6 0.2. 

L- 

FIG. 14. Profiles of U,,/a, u, for two cycles following the onset of motion, for different values of a/S. 
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U,, was calculated at each time step from Eq. (24). Its order of magnitude in the 
theory of Longuet-Higgins is 

u -EL = O(ak). 
ad 

At small amplitudes, numerical errors are dominant in the computed values of 
iJ,,/aa. These errors are approximately independent of amplitude, as shown in 
Fig. 14, and are about 0.05 throughout the first two cycles. These errors become 
small when 

ak % 0.05. 

Agreement with the predictions of Longuet-Higgins should therefore be expected 
in the range 

0.05 4 ak < 1. 

Computer runs were performed with values of ak up to 0.5. The results are shown 
in Fig. 15. The mass-transport velocity profiles approach the theoretical prediction 
as the outer boundary layer, containing the second-order vorticity, becomes large 
with respect to 6. The rate of convergence increases with amplitude. At the largest 
amplitude considered, convergence required approximately 3.5 cycles. 

Fig. 16 shows that a closer agreement with theory, as well as a reduction in the 
required CPU time and memory, can be obtained by solving Eq. (27) using the 
stream-function distribution, averaged over the second cycle. The influence of 
starting vortices was reduced by linearly increasing the wave amplitude from zero 
to its final value through the first quarter cycle of each run. The mass-transport 
velocity at the top of the boundary layer was found to be slightly dependent upon 
the value of (%/ay),=,, used in the application of boundary condition (28b). 

FIG. 15. Profiles of ~&/ci(a~k)~ taken at intervals throughout the first 3.5 cycles following the onset of 
motion, where u/6 = 250: (-) = steady-state solution (Longuet-Higgins); (- ’ -. ~ .) = 1 cycle; (- --) 
= 2 cycles; (---) = 3 cycles; ( . ) = 3.5 cycles. 
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FIG. 16. Profiles of U,k/~(a,k)~. U, is evaluated from the stream-function distribution, averaged 
over the second cycle following the onset of motion: (-) = theory (Longuet-Higgins); (0) = wave 
motion started impulsively; (0) = wave amplitude increased linearly from zero through the first quarter 
cycle. 

(&/8y),=,, was taken to be an average value through the upper part of the flow 
field; the results were influenced by the range of y chosen for this average. In no 
case, however, did the difference between theory and computational results exceed 
4%. 

Mass Transport due to Finite Amplitude Waves 

The Fourier series/stream-function approach of Rienecker and Fenton [S] can 
be used to determine the properties of steady irrotational waves of almost arbitrary 
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height H and period T travelling over a flat bed at any depth d. It is applicable to 
all waves other than those approaching the solitary wave limit. A program [17] 
was available which, for given values of H, T, and d, calculates the horizontal 
velocities at uniformly spaced points lying at a particular height above the bed. 
These provide the upper boundary condition required to model the viscous dif- 
fusion of vorticity from the bed and the subsequent development of a boundary 
layer. Following Isaacson [16], the mass transport velocity, expressed in the form 
of the dimensionless group U,/( (h/d)* (gd)“‘), is shown in Fig. 17 plotted against 
(d/gT*)‘/” for different values of H/d. The curves, taken from Isaacson, use cnoidal 
theory for shallow water and Stokes theory for deep water, with a smooth transi- 
tion assumed between the two. They are in rough agreement with experiment, 
which shows considerable scatter, although the deviation from linear theory is clear. 
Computational values of U,/((h/d)2 ( gd)‘j2) become greater than those in Isaac- 
son’s curves as H/d increases, suggesting the importance of modelling finite wave 
amplitude in shallow water conditions. 

FIG. 17. Comparison of the variation of U,/(H/d)* m with (d/gP)“* as predicted by cnoidal 
and Stokes’ theories (broken lines) with values generated by the vortex model (discrete points). The 
solid line corresponds to linear wave theory (Longuet-Higgins). The region to the left of line AB, and 
below BC is that within which L/d > 20 and H/l 2 0.01. Under these conditions the waves approach the 
solitary wave limit and the Rienecker and Fenton method ceases to be applicable. 
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Small Amplitude Undulations 

Fig. 18 shows profiles of UM2 and Ur,,,3 generated by sinusoidal waves over a rip- 
pled bed. In a realistic simulation of the sea bed, the wavelength of the ripples 1 
would be much smaller than that of the wave L,. However, since a length L, of the 
bed must be discretised into linear segments and the number of segments must be 
sufficient to define each ripple, the ratio of L, to 1 was limited to approximately 10. 
The crest-to-trough distance of the ripples was made equal to 6, so that the flow 
would remain attached throughout the wave cycle. A range of values of a/6 was 
investigated. It was found that the limiting values of U,, and U,, were indepen- 
dent of a/6, although the height above the bed at which these values were 
approached increased with a/6. 

A profile of UMi could not be obtained from Eq. (27), since the position y = 0 
cannot be defined in the case of a rippled bed. To a second order of approximation, 
however, UM, is equal to the mean Eulerian velocity, the time development of 
which is shown in Fig. 19. Although the profile shows considerable irregularity, the 
results are broadly similar to those shown in Fig. 15 for the case of a plane bed, 
with the profile tending towards that prediced by Longuet-Higgins for the steady 
state. 

10 r 

FIG. 18. Profiles of [ ~,,/(a%)] and [Cr,,/(a*ko)] for sinusoidal waves of differing amplitude 
over a rippled bed: (-) = theory (Longuet-Higgins); (-) = u/b = 1; (---) = u/6 = 50; (---) = u/6 = 100. 

581/60/3-II 
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SINUSOIDAL FLOW OVER A RIPPLED BED 

DuToit and Sleath [18] made detailed velocity measurements over smooth rip- 
pled beds of fixed form performing sinusoidal oscillations, so that the x coordinate 
of each position on the bed varies as: 

X= a sin(at) (33) 

They considered values of a/l ranging from 0.2, giving laminar flow conditions, to 
1.2, where the flow was turbulent. 

The vortex-in-cell method was used to produce velocity predictions for the case 
of laminar flow. Following DuToit and Sleath, the bed was set up with a surface 
profile given by 

y cos(k() x -sin(&) -=- -= 
h 2 h 2 . 

They had shown that this profile is very similar to the mean profile taken by a bed 
consisting of free grains of sand. 

The influence matrix was calculated, as before, for an infinite symmetrical 2- 
dimensional body, for which the rippled bed formed the upper surface. Suitable 
numerical parameters for the computations were estimated, for a given set of flow 
parameters, by varying each one independently until the stream-function dis- 
tribution at the end of one wave cycle became independent of its value. The set of 
flow parameters, 

a/l = 0.2; 6/1=7.96x 10-3; h/l= 0.17, 

where h is the crest-to-trough distance, required a mesh consisting of 33 elements 

FIG. 19. Profiles of tik/c~(a~k)~ taken at intervals throughout the first 3.5 cycles following the onset of 
sinusoidal wave motion over a rippled bed, where u/6=250; (-)=steady state solution (Longuet- 
Higgins). (-.-.-.-) = 1 cycle (-) = 2 cycles (----) = 3 cycles (-----) = 3.5 cycles. 
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(in x) by 65 (in v). Forty discrete vortices were generated per time step, and each 
wave cycle was subdivided into 56 time steps. 

The computations simulated wave motion above a fixed bed. In order to make 
comparisons with the velocity measurements of DuToit and Sleath, which were 
made at fixed points above a moving bed, velocities were calculated, using Eqs. (5), 
at a point moving sinusoidally in the x direction and situated directly above a rip- 
ple crest every half wave cycle. The onset-flow velocity was then subtracted from 
the results. 

The calculated velocities were non-periodic. Following the first wave cycle, 
velocity fluctuations of increasing amplitude occured due to the presence of large 
eddies, which formed in the lee of each ripple crest and then persisted in the flow 
near the bed over several cycles. Following Kiya et al. [ 191, a decay law was 
employed to govern the circulation of each discrete vortex, 

F(t)= 1 -exp(f), 
0 

(34) 

where t is the age of the vortex, TO is its initial circulation, and D is an empirically 
determined decay factor. Equation (34) is chosen because it is an exact solution to 
the Navier-Stokes equations governing the viscous decay of a single vortex. With a 

uu 
x- 

05 

FIG. 20. The velocity cycle at a fixed point above a rippled bed. The bed performs sinusoidal 
oscillations; the point at which the velocity is calculated lies directly above a ripple crest when uT=O, 
n,.... Its height y, above the crest is equal to 3.16. Computational results, obtained using different decay 
factors D, are compared with the experimental results of DuToit and Sleath, and with the potential flow 
solution, calculated numerically from the velocity potential d = -au5 cos(crr). Experimental results are 
drawn as a band, corresponding to experimental error: (-) = potential flow; (+ ) = D = n; 
(@)=D=0.371. 
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FIG. 21. Sinusoidal flow over a rippled bed at 3.25 and 3.50 cycles following the onset of motion. The 
Reynolds number Re is defined as Re = aul/v. The diagram shows the paths through which discrete vor- 
tices are convected in a single time step. One in four of the total number of vortices is plotted. 
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suitable decay factor, the influence of the large eddies was diminished, and a 
periodic flow was obtained after approximately one wave cycle. 

Average velocity cycles were calculated; Fig. 20 shows one such cycle at two dif- 
ferent values of D. As D is reduced, the potential flow solution is approached. 
Agreement with experiment, within the limits of experimental error, is obtained at 
D = 0.371, corresponding to a reduction in circulation of 55 % for a vortex in its first 
quarter cycle. Figure 21 shows the flow patterns obtained at 3.25 and 3.5 cycles 
following the onset of the flow. These patterns are constructed by drawing the paths 
through which discrete vortices are convected in a single time step. An eddy in the 
lee of the ripple crest and separation near the crest can be seen. 

DISCUSSION 

The representation of the bed by a vortex sheet through a boundary integral 
calculation has the advantage that the only restriction placed upon the geometry of 
the bed is that it should be periodic. Arbitrary wave motion may be imposed; the 
only input required is the horizontal velocity distribution at a single level, at a 
height sufIicient for the horizontally varying effects of bed undulations and the 
boundary layer to be negligible. The number of vortices contained within the flow 
field increases linearly with time, but the resulting large numbers can be handled 
efficiently by the use of the vortex-in-cell method, with fast Fourier transforms. 

Quantities calculated from the averaged flow field are well predicted (steady-state 
mass-transport velocity profiles are determined to within 4 %). The phase averaged 
velocity cycles for separated flows above a rippled bed showed good agreement with 
experiment, provided a decay factor was incorporated. Instantaneously calculated 
quantities do, however, show large fluctuations, which is to be expected with the 
use of random walks. Numerical smoothing of results may be used to better 
represent physical processes. 

In the case of the rippled bed, the use of a regular rectangular mesh means that 
definition within the boundary layer is poor, with approximately two cells across 
the boundary layer thickness. Increasing the definition by using a larger mesh did 
not, however, influence the calculated velocity cycles. This is consistent with results 
for flows around a cylinder. Attached flows may be simulated without the use of 
any empirical constant. However, when the flow separates over the rippled bed, a 
suitably chosen decay factor is required to bring results into agreement with 
experiment. This is probably required to compensate for large scale 3-dimensional 
effects which are known to occur for laminar as well as turbulent flows when there 
is separation. Such a factor was not required for the cylinder flows where the wake 
quickly convects away from the surface. This does not, however, occur for the rip- 
pled bed with zero mean onset flow. The time development of large scale 3-dimen- 
sional effects is complex and could depend on a number of external factors, 
including end conditions. The decay factor is thus simply a tuning device. This dis- 
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cussion is also pertinent to the modelling of turbulent flows, which are often 
assumed 2-dimensional and employ empirical turbulence factors. Adjusting factors 
for turbulence characteristics could in fact be compensating for large-scale 3-dimen- 
sional effects in a nominally 2-dimensional situation. 
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